INTERNET
APPLICATION
DEVELOPMENT

LAB 13

MUHAMMAD ALI QADRI

TABLE OF CONTENTS

PROBLEM 01 (SECURITY FEATURES)

D 03010] (534013010 4 AT PTP PP RPRPROPRORPRN 1
251101 o) LTS PU PR PROPRURPRN 1
BN Tt: 1. s 1

D 03010] 534013010 4 APPSR P PP PROPRPRPRN 1
EXAIMIPIE! ..ot E R R r R R b 1
7S TG OSSPSR 1

IMIPIEMEITALION: ...ttt bbb s bRt b e Rt e et e e nr Rt b e b nn e r s 2
EXAIMIPLE! ..ot E Rt r Rt b e r e 2
27501 1<) LT TP TP PR PR TP PP PR 2

L8301 0] (S5 10 T30 U110 4 AT PPV PRPRUPRURRORN 2
251101 o) LS T TP PT P UPT PP PRRPRUPRUPRORN 2
BN TE: 1. e 2

L8301 0) (S 10130110 4 AT OO T PP PPTPRRPRRPPTUPRUPRORN 3
251101 o) LS T T OO PP PPTURRPRUPRUPRORN 3
BN TE: 1. e 3

Access Control to Admin Panel

IMPIEMENTALION: ...ttt bbbt h et e e b et Rt bt bt e e e nr bbbt nenn e n s 3
23501 o) LSO PP PR POP PR 3
7S TG, TSP PR PR PROP PR 3

JB3010) 5340133 103 oSO P PP PP P PR 4
23501 o) LSO PP PR POP PR 4
BENETTE: 1. e 4

Summary Table

Negative Case

Input Validation
Positive Case
Negative Case

Session Management
Positive Case
Negative Case

SQL Injection Protection
Positive Case
Negative Case

Admin Panel Access Control
Positive Case
Negative Case

Secure Logout

Positive Case

Negative Case

PROBLEM 01 (SECURITY FEATURES)

Password Hashing

Purpose:

To protect user passwords from being stolen, especially in case of database breach.

Implementation:

> When a user registers or updates their password, the password is not stored as plain text.
> Instead, it's hashed using SHA-256 a secure hashing algorithm.
> During login, the password entered is hashed and compared with the stored hash.

Example:
Dim hashedPassword As String = ComputeSHA256Hash(txtPassword.Text)

' Save hashedPassword to database

Benefit:

Even if an attacker gains access to the database, they cannot see the actual passwords.

Role-Based Access Control (RBAC)

Purpose:

To ensure that different types of users (Admin, Receptionist, Patient, Doctor) only access the
data and features they're allowed to.

Implementation:

> After login, the user’s role is stored in session.
> Each page or feature checks the user's role before granting access.
» Ul elements are also shown/hidden based on role.

Example:

If Session("role") <> "Admin" Then
Response.Redirect("Unauthorized.aspx")
End If
Benefit:

Prevents unauthorized users from accessing sensitive operations (e.g., only Admin can manage
users).

Input Validation (Client-side & Server-side)

Purpose:

To prevent invalid or malicious data from entering the system.

Implementation:

> Client-side validation using JavaScript and ASP.NET Validators.

> Server-side validation in VB.NET code-behind to double-check input before inserting
into the database.

Example:
> Use RequiredFieldValidator, RegularExpressionValidator

> In server-side code:
If txtEmail. Text = "" Or Not txtEmail. Text.Contains("@") Then
IblError. Text = "Invalid Email"
End If
Benefit:

Prevents data inconsistency, accidental errors, and some forms of injection.

Session Management

Purpose:

To manage user authentication and preserve user state across multiple pages.

Implementation:

> When the user logs in, their ID and role are stored in session variables.
> Pages validate session existence and redirect login if expired.

Example:

If Session("username") Is Nothing Then
Response.Redirect("Login.aspx")
End If
Benefit:

Keeps unauthorized users from accessing the system after logout or timeout.

SQL Injection Protection

Purpose:

To prevent attackers from manipulating SQL queries through form input.

Implementation:

> Use parameterized SQL queries instead of string concatenation.
> Avoid direct user input inside SQL strings.

Example:

Dim cmd As New SqlCommand("SELECT * FROM Users WHERE username = (@username
AND password = @password", conn)

cmd.Parameters. AddWithValue("@username", txtUsername.Text)
cmd.Parameters. AddWithValue("@password", hashedPassword)
Benefit:

Prevents attacks like ' OR 'I'="1 from bypassing authentication.

Access Control to Admin Panel

Purpose:

To prevent non-admin users from entering admin pages (like user management or employee
addition).

Implementation:

> Check the session role before loading any sensitive pages.
» Optionally, hide the Admin navigation panel for other users.

Example:

If Session("role") <> "Admin" Then
Response.Redirect("NoPermission.aspx")
End If
Benefit:

Secures high-privilege features of your HMS from regular users or receptionists.

Secure Logout Mechanism

Purpose:

To ensure user sessions are properly terminated to prevent reuse by unauthorized parties.

Implementation:

> On logout, clear all session variables and redirect to login page.
> Prevent access to previous pages using the back button after logout.

Example:

Session.Clear()
Session.Abandon()
Response.Redirect("Login.aspx")
Benefit:

Protects against session hijacking and ensures security after logout.

Summary Table

Security Feature Purpose Key Implementation
1 Password Hashing Protect stored passwords Use SHA-256 or stronger hashing

Different rights for each
user

2 Role-Based Access Session-based role checks

3 Input Validation Stop invalid/malicious input ASP.NET + server-side checks
4 Session Management Manage login state securely Session timeout + page protection
5 SQL Injection Protection Prevent SQL manipulation Parameterized queries

) Restri 1 .
6 Admin Access Control pae;;wt access to admin Role check in page load

7 Secure Logout Properly terminate session Session.Abandon() and redirect

PROBLEM 03 (TEST CASES)

Password Hashing — Test Cases

Positive Case
Input:

> A new patient registers using the HMS signup form with the following credentials:
o Username: aliansari

o Password: ali1223

In the database, the password is stored as a hashed value (e.g., SHA-256 or salted hash).
It is not readable and not the same as the original password.
Login with ali1223 works correctly.

The stored hash differs from the hash of another user using the same password as salting
is applied.

Negative Case
Input:

> Attempts to store the password directly (plaintext) into the database (e.g., bypassing the
application logic).

o Username: attacker

o Password: plaintext123

The system automatically applies the hashing algorithm through the server-side code.
If password is found stored as plaintext, test fails.
The system rejects or logs any bypass attempt without hashing.

Login using plaintext123 does not work unless it is hashed and stored properly.

Role-Based Access Control (RBAC)

Positive Case

Input:
> Login as a Receptionist (valid credentials).
> Navigate to the Patient Management page.
Result:
> Receptionist is allowed to view and edit patient records.

Negative Case
Input:

> Log in as a Receptionist.
> Manually enter the URL for the Admin User Management page.
Result:

> Access is denied (redirected to “Access Denied” or Login page).

Input Validation

Positive Case

Input:
> In the patient registration form, enter a valid email: abc@gmail.com.
> Enter age: 45.
> Leave no required field blank.
Result:
> Form submits successfully; data is accepted.

Negative Case
Input:

> In the same form, enter email: not-an-email and age: -5.
> Try injecting script: <script>alert('X")</script> into the name field.
Result:

> Validation errors displayed: “Enter a valid email,” “Age must be between 1 and 120,” and
script tags are rejected or sanitized.

Session Management

Positive Case

Input:
> Login as any user.
> Navigate several pages within 20 minutes without logging out.
Result:
> Session remains active; user can access their dashboard without re-login.

Negative Case
Input:

> Log in, then wait 30 minutes (session timeout).
> Click the browser Back button to return to a protected page.
Result:

> User is redirected to the Login page due to the expired session.

SQL Injection Protection

Positive Case

Input:
> In the login form, enter normal credentials:
> username: aliansari
> password: ali1223
Result:
> Login succeeds or fails normally, no error.

Negative Case
Input:

> In the username field enter:
> "OR'1'='1" --
> Any password.

Result:

> Injection attempt is neutralized; login fails with “Invalid credentials.”

Admin Panel Access Control

Positive Case

Input:
> Login as Admin.
> Navigate to User Management page.
Result:
> Admin may view, add, edit, or delete user accounts.

Negative Case
Input:

> Log in as Doctor.
> Attempt to click “Manage Users” or enter its URL.
Result:

> Access is denied; user is redirected away with an error message.

Secure Logout

Positive Case

Input:
> Log in, then click the Logout button.
Result:

> Session is cleared, user is redirected to the Login page, and cannot access any protected
pages without logging in again.

Negative Case
Input:

> After logging out, click the browser’s Back button to revisit a protected page.
Result:

> User remains logged out and is redirected back to the Login page (no cached content
shown).

Feature

Password
Hashing

Role-Based
Access
Control

Input
Validation

Session
Management

SQL

Injection
Protection

Admin Panel
Access
Control

Secure
Logout

Positive Input

Register with
password alil223

Receptionist logs
in and navigates
Patient page

Valid email
abc@gmail.com,
age 45

User navigates
within session
timeout period

Normal login
credentials

Admin logs in
and opens User
Management

User clicks
Logout

Positive Result

Password stored as a
hash; login with
alil223 succeeds

Access granted

Form submits
successfully

Session remains
active; pages
accessible

Login process runs
normally

Admin may
view/add/edit/delete
users

Session cleared,;
redirected to Login;
protected pages
blocked

Negative
Input

Attempt to
store or view
plaintext
password

Receptionist
tries to access
Admin User
Management
URL

Email not-an-
email, age -5,
script tag in
name field

Wait past
session
timeout then
click Back on
protected page

Username ' OR
|1V=l 1' __’ any
password

Doctor logs in
and attempts to
open User
Management
URL

After logout,
click Back
button

Negative Result

System stores hash
only; plaintext not
accepted; login fails
un-hashed

Access
denied/redirected

Validation errors
shown; malicious
input rejected

Redirected to Login
(session expired)

Injection
neutralized; login
fails

Access
denied/redirected

Remains logged

out; redirected to
Login; no cached
protected content

